scom1001 science communication 1: science and public awareness

course manual 2014

the australian national university

the australian national centre for the public awareness of science

course convenor
lindy orthia
lindy.orthia@anu.edu.au
6125 6148
room g11, physics link building 38a
consultation by appointment
timetable 2014

semester 1
February 17 – May 30

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Tuesdays</th>
<th>2-4 Forestry Theatre, building 48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursdays</td>
<td>12-1</td>
<td>SRES Theatre, building 48a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutorials</th>
<th>Thursdays</th>
<th>2-4 Green Couch Room, building 38a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fridays</td>
<td>9-11</td>
<td>Green Couch Room, building 38a</td>
</tr>
<tr>
<td>Fridays</td>
<td>11-1</td>
<td>Green Couch Room, building 38a</td>
</tr>
<tr>
<td>Fridays</td>
<td>1-3</td>
<td>Green Couch Room, building 38a</td>
</tr>
</tbody>
</table>

assessment at a glance

<table>
<thead>
<tr>
<th>assignment</th>
<th>component</th>
<th>marks</th>
<th>due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL SCIENTISTS TALK</td>
<td>interview with a scientist folio</td>
<td>15%</td>
<td>Thursday 27 March</td>
</tr>
<tr>
<td></td>
<td>research and reference task</td>
<td>10%</td>
<td>Thursday 27 March</td>
</tr>
<tr>
<td></td>
<td>group analysis of several interviews</td>
<td>25%</td>
<td>Wednesday 23 April</td>
</tr>
<tr>
<td>CONTEXT X ISSUE Q</td>
<td>summary of science journal paper & reflection on its communication context</td>
<td>15%</td>
<td>Thursday 8 May</td>
</tr>
<tr>
<td></td>
<td>2 translations of that paper for different audiences</td>
<td>30%</td>
<td>Friday 23 May</td>
</tr>
<tr>
<td></td>
<td>(2 x 15%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONFERENCE FEEDBACK</td>
<td>feedback to three speakers at SCOM2001 student conference</td>
<td>5%</td>
<td>At conference in week 13, day/time TBA</td>
</tr>
</tbody>
</table>
why study scom1001?

SCOM1001 Science Communication 1: Science and Public Awareness is the introductory course in the ANU science communication program. As a standalone elective it is a useful adjunct to a science degree, helping future scientists to manage the communication aspects of their jobs with confidence, skill and effectiveness. Research scientists are increasingly being asked to speak to the media, deliver public lectures, inform government policy and more. People working in applied science areas such as doctors and nurses, psychologists and engineers always have to communicate with non-scientists as a daily part of their work. SCOM1001 is designed to give these future scientists some preparation for those communication situations, be they routine or difficult.

SCOM1001 is also a solid foundation for a major or minor in science communication, and for working towards a science communication career. Science communication is a growing area of employment, as science organisations continue to realise the importance of communicating about their work with the public, the media, governments, business, clients, patients, community groups and other stakeholders. Science communication graduates have built careers as health promoters, environmental lobbyists or activists, science journalists, science presenters, communications officers for science organisations, science policy analysts working in government, and many other areas. If you like science but don’t want to be a research scientist, think about using your scientific training in an area of science communication.

australian national centre for the public awareness of science

The ANU science communication program is an initiative of the Australian National Centre for the Public Awareness of Science (CPAS). CPAS is Australia’s oldest and most diverse academic science communication centre. It offers undergraduate and postgraduate courses and research supervision, as well as contributing to internationally recognised science communication research, informing science communication policy, and delivering science outreach programs locally, nationally, internationally and online. CPAS boasts a unique connection with Questacon – the National Science and Technology Centre – and linkages with some of the world’s leading science communicators.

course overview

SCOM1001 provides an introduction to contemporary social and communication issues in science, technology and society. We’ll discuss:

- the reasons for communicating science in the public arena
- different theoretical approaches to communicating science
- the diverse social, cultural, political and economic factors that shape public attitudes to science and make communication difficult
- practical methods for communicating science in different contexts with different audiences.

The course focuses heavily on current events and issues facing scientists, science communicators, policy makers, and the community. You are encouraged to discuss your own views on the role of science and technology in the community and issues associated with communicating science with sectors of the public. You are expected to take an active approach to learning.
course modules

Module 1 - History and theory of science communication
After introducing science communication and SCOM1001 in the first lecture, in this module we will review the historical reasons why science communication has become an increasingly important focus of scientists’ training, and the competing theoretical approaches to doing effective science communication. We will tease out the different possible goals for science communication and outline basic principles of ‘best practice’ for communicating science with the public. We will ask seemingly obvious questions like ‘what is science?’ and ‘what is communication?’ in order to clarify our goals. We’ll look at the history of science as well as the social, political, economic and cultural meanings of science and how these things shape the current communication environment. This module will also see an introduction to the first assessment item, in which you will investigate the barriers that scientists face when wanting to communicate science, and their attitudes to communicating their work. You will also learn the critical differences between different sources of information about science and how to use each.

Module 2 - Understanding audiences and mediums
The major lesson to be drawn from SCOM1001 is that ‘context is everything’, and this module will demonstrate that people’s experiences and the contexts in which communication take place are essential for us to take into account when we are communicating science with them. We will turn from theory to practical issues in science communication, discussing how to communicate science in different mediums and for different purposes. The situations we will explore include writing science journalism, communicating our science with governments to convince them to fund our research, writing public information leaflets and blog posts to further a particular science-related cause or raise awareness about a science topic, and giving face-to-face presentations. In this module you will complete assessment items in which you emulate professional science communication practices such as writing news articles, making campaign materials, and presenting entertaining public lectures, giving you practical experience at interpreting science in plain English for a specific audience. You will also reflect on the communication contexts of communicating about a particular science topic that interests you.

In the final week you will complete the course and put your theory and skills into practice by attending and giving feedback on the second year science communication conference organised by students enrolled in SCOM2001 Practical Skills for Communicating Science.

course learning outcomes
On satisfying the requirements of SCOM1001, students will have the knowledge and skills to:

1. Work as part of a team in a collaborative environment
2. Understand and describe the key issues and importance of effective science communication.
3. Recognise how social contexts affect the practice and communication of science.
4. Translate and report on scientific writing.
5. Evaluate the effectiveness of the presentation of science in various media.
6. Understand and practice modes of scientific communication appropriate for peers, funding bodies, and publics.
7. Synthesise personal interests, values and aspirations with professional development.
Lectures, Tutes & Due Dates

<table>
<thead>
<tr>
<th>Week</th>
<th>Module</th>
<th>Lectures</th>
<th>Tutes</th>
<th>Due Dates and Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>wk 1</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>submit your proposed scientist’s details on Wattle for Lindy to approve choice</td>
</tr>
<tr>
<td>wk 2</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>interview scientist one of these weeks</td>
</tr>
<tr>
<td>wk 3</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>interview folio due 15% research & ref task due 10%</td>
</tr>
<tr>
<td>wk 4</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>interview for Lindy to approve choice</td>
</tr>
<tr>
<td>wk 5</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>interview folio due 15% research & ref task due 10%</td>
</tr>
<tr>
<td>wk 6</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>interview for Lindy to approve choice</td>
</tr>
<tr>
<td>wk 7</td>
<td>History and theory of science communication</td>
<td></td>
<td>no tutes</td>
<td>interview for Lindy to approve choice</td>
</tr>
</tbody>
</table>

Teaching Break

<table>
<thead>
<tr>
<th>Week</th>
<th>Module</th>
<th>Lectures</th>
<th>Tutes</th>
<th>Due Dates and Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>wk 8</td>
<td>Understanding audiences and mediums</td>
<td></td>
<td>no tutes</td>
<td>group interviews analysis due 25%</td>
</tr>
<tr>
<td>wk 9</td>
<td>Understanding audiences and mediums</td>
<td></td>
<td>no tutes</td>
<td>summary & reflection due 15%</td>
</tr>
<tr>
<td>wk 10</td>
<td>Understanding audiences and mediums</td>
<td></td>
<td>no tutes</td>
<td>summary & reflection due 15%</td>
</tr>
<tr>
<td>wk 11</td>
<td>Understanding audiences and mediums</td>
<td></td>
<td>no tutes</td>
<td>summary & reflection due 15%</td>
</tr>
<tr>
<td>wk 12</td>
<td>Understanding audiences and mediums</td>
<td></td>
<td>no tutes</td>
<td>summary & reflection due 15%</td>
</tr>
<tr>
<td>wk 13</td>
<td>Understanding audiences and mediums</td>
<td></td>
<td>no tutes</td>
<td>summary & reflection due 15%</td>
</tr>
</tbody>
</table>

Exam Period - No Assessment

Our Fabulous Guest Lecturers

- Prof Sue Stocklmayer: Director, CPAS
- Dr Rod Lamberts: Deputy Director, CPAS
- Prof Mike Gore: Founder of Questacon
- Dr Will Grant: Lecturer, CPAS
- Dr Merryn McKinnon: Research Fellow, CPAS
- Dr Sean Perera: Research Fellow, CPAS
- Dr Suzette Searle: Research Fellow, CPAS
- Mr Brod Matthews: Coordinator, Shell-Questacon Science Circus
- Ms Brenda Moon: CPAS PhD Researcher & IT professional
- Dr Wendy Russell: Primary Consultant, Double Arrow Consulting
course communication

This manual and Wattle are the key forms of general communication in this course. All new course information will be communicated with students via the forum on Wattle. It is your responsibility to check Wattle regularly. All students will be signed up to receive email alerts of additions to the forum. It is an expectation of the ANU that you check your university email account regularly - at least a few times per week.

If you have questions about the course or personal queries related to the course, speak to your tutor in the first instance or contact Lindy.

Please let your tutor know if you are unable to make it to a tute so they don’t wait for you before starting the class.

communicating with teaching staff

The preferred method of communication with staff outside class time is by email. We will attempt to reply within 24 hours.

Please note that email in the academic context is a formal method of communication, and it is not acceptable to send emails in which you do not identify yourself. Emails sent from ANU-assigned email addresses (in the form of uXXXXXXX@anu.edu.au) that are not signed with your name will NOT be answered. Practice your professional skills and sign your name properly!

If you need to see teaching staff in person, please email us to make an appointment.

SANDPAW - sci com students’ blog

In 2010 we set up a blog for science communication students — you! — to contribute to. Go to http://sandpaw.weblogs.anu.edu.au/ or follow the link on Wattle.

It is here that you can share your discoveries about science communication matters with other students and the world. Invariably each year students just like you find some gem of science communication on Youtube, or some interesting or controversial web article that you have opinions about, or you do some really terrific research in the course that you want to share. Finally here is a place for all that material to go, so we can start some conversations about sci com from a student perspective.

Your Context X Issue Q ‘blog post’ translations should also be posted here. Some students’ SCOM1001 posts have made the top page on Google so it’s a great way to get your work out there.

So what are you waiting for? Sandpaw needs you!
assignment submission

Assignments are to be submitted by 5pm on the due date unless otherwise indicated.

Extensions are possible under certain circumstances but will require evidence (such as a medical certificate) that you will be unable to complete the assessment item in the time required due to circumstances beyond your control. You should contact teaching staff as soon as you are aware that you will not be able to meet the deadline.

There are two ways assignments can be submitted:

1. **Paper submission**: This is the preferred way in SCOM1001, unless otherwise indicated. Assignments are to be posted into the box outside CPAS. These must be accompanied by an official CPAS coversheet on which you declare that the work complies with the ANU Code of Practice for Student Academic Integrity. A copy of the coversheet is available from the SCOM1001 Wattle page and spare copies are kept next to the assignment box.

2. **Submission by email**: Under rare circumstances such as a personal emergency, and with permission from Lindy in advance, you can submit an assignment by email. If you do this you must include the following statement in the body of the email: "I declare that this assignment is entirely my own work. Any material from other sources is correctly acknowledged." Remember to write your full name at the end of your email. DO NOT assume permission will be granted for this, and do not use email to get around late penalties.

For each day or part day an assignment is late, including weekends, 5% of the total possible mark will be deducted from the awarded mark. Assignments submitted 7 days or more after the due date will not be accepted.

Assignments will be returned to you in class or will be available for collection from the tray at the entrance to CPAS.

referencing

An important aspect of any well-researched and written assignment is the thorough documentation of the information on which it is based. This means that if the source of anything you write is not the product of your thinking and analysis, you must indicate it by citing the appropriate reference(s). It is essential that all references cited in the text appear in full in the reference list at the end of the text and vice versa.

You must use a recognised referencing style (such as APA, MLA, Harvard) for references and your reference list. If you don’t know one, use APA (see en.wikipedia.org/wiki/APA_style). Notes about referencing are included on Wattle. If you have concerns about referencing unconventional sources, please speak to Lindy.

plagiarism

All students must be familiar with the University’s Code of Practice for Student Academic Integrity. When you hand in your assignments, you MUST attach a cover sheet and sign it. This is a declaration that you are familiar with the Code and understand its meaning and implications. There are severe penalties for breaching the Code. Follow the link on Wattle for details.
scom1001 course readings

There is no single set text for this course, however there is a required set of readings. The readings are available online through the course Wattle site. Download and read them electronically or print as you see fit. If you are having trouble downloading some or all of the readings, let Lindy know. Note that the reading load is heavier in the earlier weeks of semester, to spread the course workload across the semester.

You are expected to read the set readings for each week before the tutorial, and to use them when completing assessment items. If you are finding it difficult to understand or complete the set reading, speak to your tutor - we are here to help! Or better yet, raise your questions in tutes and discuss them with other students - they might have questions too.

The set readings are briefly described in the following pages so that you know what they are useful for and how they fit into the course. Each reading is also fully referenced, to give you a head start with learning and practicing referencing skills. Now there are no excuses for you to not reference these sources in your assignments.

and also ...

In addition to these set readings, you may wish to pursue additional reading building on matters discussed in lectures. The sources used for most lectures will be referenced on the PowerPoint presentations. You can track down those references to further your understanding of the issues, which will improve your assessment. On the course Wattle page, there is a link to a page of ‘Science Communication Research Resources’. On this page are links to the major science communication journals and a number of books and websites that will also be useful for your assessment and general learning about sci com.

recommended textbook

Although there is no set text, there is a recommended textbook for this and all other SCOM courses. A number of SCOM1001 readings are taken from it, so it is very relevant to your studies and worth buying a copy. It is:

It is available from the Coop Bookshop and other booksellers for about $50-$70. There is a copy in the ANU library if you want to have a read first. Available in paperback, ebook and hardcover.
weekly readings overview

Why read these?
This week’s first two readings will provide you with an introduction to science communication and some of its current issues, including reasons why scientists should communicate their work in the public domain, and problems with current science communication policy in Australia. The third reading challenges some of the premises of the public understanding of science movement of the late 20th century, which had suggested the public is stupid and needs to know more science facts - the authors of this journal paper show that even scientists forget or challenge some scientific facts that are often considered ‘basic’ science, if that science is not relevant to their daily lives.

Number of pages to read (excluding references etc)
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingsley</td>
<td>2</td>
</tr>
<tr>
<td>Metcalfe</td>
<td>2</td>
</tr>
<tr>
<td>Stocklmayer & Bryant</td>
<td>19</td>
</tr>
<tr>
<td>TOTAL</td>
<td>23</td>
</tr>
</tbody>
</table>

Why read these?
This week’s first reading will introduce you to ideas about what science communication’s goals are and why. The second reading expands on this foundation by further developing some of the core concepts in science communication theory, primarily different models of science communication. Both will help you with your ‘Real Scientists Talk’ chunk of assessment, particularly when developing your questions and analysing your interview results.

Number of pages to read
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burns et al</td>
<td>16</td>
</tr>
<tr>
<td>Stocklmayer</td>
<td>16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>32</td>
</tr>
</tbody>
</table>

Why read these?
This week’s readings are crucial for helping you identify issues and questions for your scientist interview assignment. The first is a published overview of Suzette Searle’s research into Australian scientists’ communication practice: a comprehensive and citable version of the material you’ll hear about in her guest lecture. The second presents the main findings of an important UK survey of scientists’ views about communicating science. The third is a smaller study of scientists’ attitudes, with a deeper level of analysis. This might be a good paper to help you structure your group analysis.

Number of pages to read
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searle</td>
<td>14</td>
</tr>
<tr>
<td>Royal Society</td>
<td>8</td>
</tr>
<tr>
<td>Davies</td>
<td>18</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
</tr>
</tbody>
</table>

week 4

Why read these?
The handout by Orthia is a guide to evaluating the scientific credibility of different kinds of research sources such as journal papers, books and websites, and is essential reading for your research task. The chapter from Reeves’ book discusses key differences between traditional science writing and other forms of writing, and the dangerous power that scientific language has to turn cultural ideas into ‘facts’.

Number of pages to read
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthia</td>
<td>10</td>
</tr>
<tr>
<td>Reeves</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
</tr>
</tbody>
</table>

week 5
READ AT LEAST ONE OF:

Why read these?
This week you have a choice of readings. All are case studies illustrating the impact past experiences with science and technology can have on people’s willingness to challenge their scientific knowledge or beliefs in the classroom (Verhey), their trust in scientists (Freimuth et al) or their desire to pursue a scientific career (Chimba and Kitzinger).

Number of pages to read
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimba & Kitzinger</td>
<td>13 OR</td>
</tr>
<tr>
<td>Freimuth</td>
<td>11 OR</td>
</tr>
<tr>
<td>Verhey</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL (if you choose all!)</td>
<td>32</td>
</tr>
</tbody>
</table>
scom1001 course readings cont’d

week 8

Why read these?
This week’s readings bridge the gap between theory and practice in science communication. The first reports on recent evaluations of Australian science communication activities, and is relevant to this week’s guest speaker, Wendy Russell. The second is a study that investigates what experts believe are the crucial ingredients for effective science communication.

Number of pages to read
Salleh 1
Bray 16
TOTAL 17

week 9
This week you have 6 readings, all about the same research project. Read through the first - the journal paper reporting on the research - so that you have some idea what it is about and how it’s discussed in a journal format. Then read more closely the other five (short) pieces, to identify the elements of style and structure the writers have used to write for different audiences and mediums.

Number of pages to read
Lu et al journal paper 11
Other 5 pieces 5
Total 16

weeks 10 & 11

Plus a 1 page diagram ‘Chart suggestions - a thought starter’

Why read these?
The final readings for the course, spread over two weeks, offer general tips for effective communication. The first gives quick tips for live presentations. The second is focused on science learning, but includes practical ideas to make science communication activities effective. The third is a philosophical reflection on what makes good science communication. The final ‘reading’ is a one page guide to thinking about visual data representation through charts.

Number of pages to read
Rubenson 2
Gilbert 13
TOTAL Week 10 15

Bucchi 9
Chart starter 1
TOTAL Week 11 10
Assessment Overview and Checklist

Assessment in SCOM1001 can be conceptually divided into three chunks.

Chunk 1 is a project worth 50%, made up of three assignments. In this project you will investigate the way real scientists approach science communication by interviewing a scientist, researching ‘best practice’ for communicating science, and then comparing several interviews conducted by your classmates with ‘best practice’.

Key task prior to beginning this assessment chunk:

- Submit your proposed scientist’s details on Wattle and have your choice of scientist approved by Lindy.

Things to hand in for Chunk 1 are:

- your folio of materials relating to your interview, including:
 - a brief description of your scientist and rationale for your choice
 - a log book of the process you went through to prepare for, set up and carry out your interview
 - the list of questions you planned to ask and rationale for each
 - the transcript of your interview
 - a reflection on your interview’s strengths and weaknesses
- your research and reference task
- a group report analysing 3-4 interviews with scientists
- peer/self review form completed by each group member.

Chunk 2 is a project worth 45%. It involves choosing a scientific research paper on a topic of interest to you, summarising it in plain English, reflecting upon its communication context and the things that might make it tricky to communicate, and then communicating its content for two different audiences and mediums.

Key task prior to beginning this assessment chunk:

- Submit your proposed journal paper on Wattle and have your choice approved by Lindy.

Things to hand in for Chunk 2 are:

- your plain English summary of a scientific research paper
- a reflection on the communication context of your chosen research paper’s topic
- 2 translations of the chosen research paper crafted for different audiences and mediums (or if the ‘public lecture’ option is chosen, it must be delivered in class, and the ‘blog post’ option must be posted on the Sandpaw blog, not handed in).

Chunk 3 includes one final assignment and is worth 5%. It is designed to broaden your learning and strengthen your other work; you will give feedback to later year science communication students on their communication skills.

The single thing to do for Chunk 3 is:

- attend the conference organised by later year students and give feedback on the form provided to you on the day.
In this, the first major assessment piece in SCOM1001, you will investigate real scientists’ experiences with communicating science in the public domain: that is, with people outside of their specialist disciplinary area.

This assessment item has three components. In the first, which you will complete by yourself, you will conduct an interview with a scientist and transcribe it in full, documenting your preparation processes and reflecting afterward on the interview. In the second, you will use research skills that you learn in week 4 to find and reference ten sources of information about science communication theory and ‘best practice’ models of science communication. In the third component, which you will complete in groups of 3 or 4 people, you will compare and contrast the communication experiences of the 3 or 4 scientists you interviewed, and discuss what you find in light of science communication theory and best practice models.

How early should groups decide who to interview and what to ask?

In the first tute (week 2) you will choose your groups. Even though you won’t be working together the whole semester, working in groups from the start will allow you to consider the kinds of scientists to interview, in case you want to consider particular questions in your group report. For example, you might choose to interview only physicists, or only scientists working for private industry. Alternatively, you might choose to interview a range of scientists from different disciplines or different kinds of workplaces. You could also choose to interview only research scientists, or alternatively to profile people who trained as scientists but who are now working in different kinds of science-related jobs (medical practitioners, engineering contractors, community activists, policy advisors, etc). Of course your plans might not work out, in which case it is perfectly okay to interview almost any scientist who is willing to be interviewed (exceptions listed below).

Working in groups will also help you figure out what questions to ask when you interview your scientist. We will discuss previous research into scientists’ communication practice in week 3 as well as tips for effective question writing and interviewing, so use the readings and lectures from that week when drawing up a list of possible questions.

What kind of scientist can I NOT interview?

There are three main kinds of scientist you must avoid choosing to interview:

1. Avoid people who are professional science communicators, that is, those who communicate science well beyond their areas of expertise, such as science journalists, media science presenters and science centre staff.
2. Avoid people who primarily work as science teachers.
3. Avoid ANU first year science convenors, especially Mark Ellison, Kristen Pammer, Paul Francis and Dave Rowell. These lovely people have been interviewed to death by past students - find someone else.

Before contacting your scientist, you must have your proposed choice approved by Lindy. There is a designated place for doing this on Wattle, in the ‘Assessment help and resources’ block.

Submit your ideas as soon as possible after discussing them in your group, to maximise your planning and preparation time.
real scientists talk 1:
interview with a scientist folio 15%
due thursday 27 march, week 6, completed individually

For the first component of this chunk of assessment you will conduct and transcribe an interview with one scientist about their communication practice. You will also document the process of organising the interview, and later reflect on how the interview went. The assignment you submit will be a folio of these support materials and a transcript of the interview itself.

What do I submit for assessment?
The folio should be succinct, no more than about 5 pages, and should include:
• a brief description of your scientist and a rationale for choosing to interview them.
• a list of questions that you planned to ask - including both those determined by your group and others you crafted for your particular scientist - and a brief rationale for every question.
• a log of your preparation processes, including any notes from background research into your scientist, copies of email contact with them or notes about phone calls or face-to-face contact, a timeline of events, a brief description of where/when interview was done, and any other relevant things. As a process log this shouldn’t be a polished piece of work, but can be your rough notes, as long as they are legible.
• a half page to 1 page reflection on how the interview went, its strengths and weaknesses, and what you’d do differently next time.

You must also submit a full transcript of the interview, including opening and closing questions and spontaneous conversation. This should be an accurate reflection of what actually happened between you and the scientist, to demonstrate not only the scientist’s answers to questions, but any unplanned discussion you had with them, how you adapted to interruptions or unexpected events, etc. The transcript length will vary according to the interview length, so there is no set page limit for this.

What questions should I ask in the interview?
The exact questions asked in the interview will depend what your group decides, but could address points such as:
• what kinds of communication ‘outputs’ has the scientist produced for communicating with people beyond their specialist area or beyond science? This could include interviews with the media, blog posts, appearances in public forums, government department briefing papers, and more — the possibilities are endless.
• what kinds of training have they had in science communication skills?
• what are their attitudes to communicating their science with people outside their specialisation? (the media? governments? business? etc)
• what would they like to communicate about their science? with whom? how would they like to communicate this? why?
• what are the obstacles to achieving their ideals for communicating their research? how can these be overcome?

You can use your interview to ask questions that will get you some of the answers you need. Remember you’ll be comparing and contrasting all the interviews done by your group members, so you will all need to ask some of the same questions.

However, you must also do some research into your particular scientist before the interview in order to get the most out of the experience and maximise your marks. Find out whatever you can about them using the library, the internet, and any other sources you can think of. What ‘communication outputs’ can you find that they contributed to? What do these
outputs tell you about your scientist’s attitudes to communicating, or about their communication skills? Use this background research to write additional interview questions for them, beyond questions common to your group. For example, if they have been quoted in a newspaper article, why not ask them about their experiences with the media?

Logistical requirements

You must interview your scientist in person, or if that is not possible (e.g. if they live overseas) then over the phone. Unless you have a pressing reason, you cannot conduct your interview via email. If you think you have a pressing reason, speak to Lindy about this.

Since your interview will run better if you are well prepared, it is best to schedule the interview for week 4 or 5 of semester, and spend the first few weeks of the course preparing for it. Since the interview is due at the end of week 6, you will need to organise the interview fairly quickly. Scientists can be very busy people, and might not be able to respond to your interview request right away. It is courteous to give them plenty of notice. You must also leave at least one day between conducting the interview and handing in the assignment, because transcribing it will take some time, typically about 4 times longer than the length of the interview itself.

You must record your interview for this assignment. Use a recording device such as an iPhone if you have one, or you can borrow a departmental mp3 recorder from Lindy if you need it (there is a deposit of $50 which will be returned to you). As soon as possible after the interview, transcribe it as a word document. Your transcript must be a complete and accurate record of what was said in the interview, not a summary. Check the transcript once you’ve completed it, by listening back to the recording while reading over it. This is to correct any errors. The transcript is necessary for several reasons: (1) it is a record that you completed the interview, which is necessary to pass this assignment - a recording on its own will not be marked; (2) it will enable your group to analyse your interview more easily in component 3 of this chunk of assessment; and (3) in real-world research it is essential that you have a written record of a recording, since recordings can easily be wiped or lose quality after a number of years.

Marking criteria

To be eligible for a pass on this assignment:

- your choice of scientist must have been approved by Lindy.
- you must have conducted an interview in person or over the phone and transcribed it, unless you were given permission to conduct it via email.
- the length of the interview and the amount of support material can be variable, depending how the interview goes, though support material should ideally be no longer than 5 pages. The interview length to aim for is 20-30 minutes. A short interview in which it is obvious that you have not made much effort to spark conversation will not get a good mark.

What your assignment should ideally demonstrate:

- imagination in choosing a scientist to interview.
- evidence of detailed, quality background research into the communication experience of your scientist, that has clearly informed your interview questions and conversation.
- respect for your scientist, thoughtfulness and professionalism when preparing for and setting up the interview.
- well written, well justified interview questions that are relevant to science communication and consider previous research in this area.
- thoughtfulness in writing interview questions for your particular scientist.
- evidence of effort in eliciting informative responses from your scientist and adapting to unexpected circumstances.
- a professional and respectful but personable interview technique.
- a good quality, accurate, and neatly presented transcript.
- critical and reflexive thinking about the interview process and pertinent suggestions for what you’d do differently next time.
real scientists talk 2: research and referencing task 10%
due thursday 27 march, week 6, completed individually

The overarching purpose of this chunk of assessment is for you to compare the communication experiences of real life scientists to what science communication theory says scientists should be doing. In other words, you are to compare theory to practice. In order to do this, you need to do some research into science communication theory.

In this second component of chunk 1 you will find ten sources of information about science communication ‘best practice’ using specific library facilities, you will fully reference the ten sources, and you will briefly comment on their academic credibility.

The week 4 tutorials will be a skills workshop on the best and worst kinds of sources to use in academic research, and how to search for sources relevant to your topic. If you are already curious about this, read ahead to the week 4 set reading by Orthia (2010). In that reading you will see that, from a research perspective, there are important differences between different kinds of sources, such as academic journal papers, books, websites and newspaper articles. One of the aims of this assessment item is for you to learn what those differences are.

For example, academic journal papers are the best source of research findings from science communication researchers or scientific research projects. Newspaper articles or government media releases are the best source to use if you need evidence of government policy initiatives relevant to science communication. A website run by a community organisation is one of the best places to find that organisation’s opinions, and some such organisations will have opinions about science communication matters. Any of these sources can build up a picture of science communication theory or science communication best practice, but you do need to learn how to use them in a way that is academically acceptable.

For that reason, in this assignment, you will be required to find, on the topic of science communication theory or ‘best practice’:

- 2 academic journal research papers from different journals
- 1 academic journal review paper
- 1 book by a single author (or a single pair/group of authors)
- 1 chapter from an edited book OR 1 conference paper in a proceedings volume
- 1 published report by a government department, community organisation or business
- 2 newspaper articles from different Australian newspapers
- 2 quality websites.

Aside from the report and the websites, you cannot use a search engine such as Google. You also cannot use the library’s ‘Supersearch’ function to find any sources for this assignment. You must find your sources using:

- the ANU library catalogue for books and book chapters (and possibly for conference proceedings volumes and some reports)
- the electronic database Web of Science for journal papers and possibly for conference papers (Scopus is also acceptable for these items)
- the electronic database Factiva for newspaper articles
- Google is okay for reports and of course websites.

Again, in the week 4 tutes you’ll learn how to use these facilities.

The ten sources are a required starting point for your group report, and you should use them all to build it if you can. If you find more sources that are useful to your research, fantastic! You may use...
some sources more extensively in your report than others if they are more useful, and that’s okay. But make sure you pay particular attention to the strengths and weaknesses of each kind of source, and what each is best used for.

Once you have found your ten sources you must do three things for each source to complete this assignment:

- you must reference each using a recognised referencing style. If in doubt, use the style on the last page of the ‘How to find information about science’ booklet.
- you must document in detail the process you used to find each source, e.g. the database you used, the search terms you tried, refinements you selected, how you chose that source from the hits you obtained, and more if there were additional steps. One of the aims of this assignment is to ensure that you follow academic research processes in finding your sources, so make sure you put considerable effort into documenting this.
- you must reflect upon the strengths and weaknesses of each kind of source, in terms of their credibility for use in science communication research. This does not mean summarising the content of the particular source itself - you will do that in the team project. For this assignment all you need to do is show that you understand things like how a chapter from an edited book differs in academic credibility from a newspaper article.

Marking criteria
To be eligible for a pass on this assignment:
- you must have acquired the ten required sources using the search methods listed above; i.e. Web of Science or Scopus for journal papers, Factiva for newspaper articles and the library catalogue for most other sources - check details above before doing this task. DO NOT use another journal database such as Proquest, PubMed or Science Direct, or you will receive a fail mark.
- you must describe the process you used to find each source.

What your assignment should ideally demonstrate:
- sources that are referenced correctly, consistently and comprehensively.
- a clear understanding of how to find different sources through the ANU library system.
- sound judgements about the appropriate and inappropriate ways to use different sources.
- excellent spelling, grammar, punctuation and presentation.

real scientists talk 3:
group analysis and report 25%
due wednesday 23 april, week 8, completed as a group

Having each researched and interviewed a scientist, your group members will then get together to complete a report for this final component of ‘Real Scientists Talk’.

Compare and contrast what you each found in your interviews. How are your scientists’ attitudes to communication different? Did they have the same kinds of training in communication? Do they face the same hurdles to communicating their science? Do they have different ideals about what to communicate and how to do it and who to communicate with? (etc - you decide what to ask and discuss).
After making this comparison, your next task is to analyse it in light of science communication theory, using the sources of information you each found in the second component. In what ways does the communication practice of your scientists conform to ‘best practice’ in science communication as defined in the literature? What mental models of ‘the public’ do your scientists possess? How would you describe the style of communication they favour using terminology from science communication theory? How can science communication theory explain any differences between your scientists’ practice or attitudes? (And so on – use your knowledge of science communication theory in combination with your results to guide your discussion, and you choose the particular angles of approach and questions to discuss.)

You should also analyse your results with respect to previous research. How do your results compare with previous studies looking at scientists’ attitudes to public communication? What have previous studies shown about differences between corporate sector scientists and public sector scientists? Between chemists and geologists? (or whatever is relevant to you!) What conclusions can you draw, based on these results?

Having drafted all of this, write it up in a group report. Your report should be between 2000 and 3000 words in length. A short report that is succinct but informative will score better than a long report that is waffly and superficial. Feel free to go up to the maximum word length if you have a lot to say, but make sure you say it well.

Marking criteria
What your report should ideally demonstrate:

Overall, a report that is

- 2000-3000 words long, excluding references.
- well written, easy to read, with minimal jargon.
- excellent in spelling, punctuation and grammar.
- presented nicely, with an eye to fonts, section divisions, spacing, layout, and any tables or diagrams used.
- it is fine to use section headings.

Relevant background information for context

- the report should start with a relevant introduction, explaining why it is important to investigate the communication practice of scientists.
- you should include a brief methods section, outlining the steps you took to plan and initiate interviews with scientists, including how you chose them, the questions you wanted to ask them, and an explanation of these decisions. In other words: what did you plan to do in this project? Was this different to what actually happened?

Incisive discussion of results

- the core aim of this report is to construct a clear, comprehensive, thoughtful discussion bringing together relevant elements from the 3 or 4 scientist profiles.
- within this, you must show that you have a good understanding of the points of conflict or concordance between your scientists. Describe these carefully and discuss them thoughtfully.
- you must also make appropriate use of science communication theory and previous studies to interpret or explain your results.
- finish with a discussion of the significance of your results for the discipline in general: what ‘big issues’ do your findings raise for science communication?

References

- ensure you have comprehensive, consistent and correct referencing and use a recognised referencing system throughout your report. This piece of work is academic in style, so must be written and referenced in a way that backs up everything you say and acknowledges other people’s work.
scom1001 assessment cont’d

Peer/self assessment form

In addition to completing the assignment, each group member must submit an individual peer/self-assessment form (available on Wattle, or you can email Lindy the information required). You will give each group member — including yourself — a mark out of 100 reflecting the effort they gave to the project. This should include their contributions to any group discussions in class, out of class and online, as well as to the production of the report itself. Equal effort does not necessarily mean doing the same kind of work; it is up to you to divide the necessary tasks evenly. Then you will be able to estimate how much effort each person put into the tasks allocated to them.

You must justify any mark less than 100. An individual mark will be calculated for each team member based on the peer/assessment forms and the overall mark for the report. See below for a demonstration of how this works.

Peer/self assessment forms must be handed in (or the information emailed to Lindy) by the assignment deadline. Late forms will incur an individual late penalty just like any other assessment item.

CHUNK 2

context X issue Q total 45%
2 components, completed individually

For this chunk of assessment you will put your science communication skills into practice on a science topic of your choice. You will use published science communication research to back up your approach to communicating the topic.

To begin this chunk, you will choose a scientific research paper published in a peer-reviewed journal.

Once you have chosen a journal paper you would like to use in this assignment, you must have your choice approved by Lindy. There is a designated place for doing this on Wattle, in the ‘Assessment help and resources’ block. Submit your ideas for a journal paper in time to be ready to work on the paper in term 2.

Calculating individual marks for group analysis

Overall grade for report (given by tutor): 60%
Matrix of peer/self assessment marks (given by group members):

<table>
<thead>
<tr>
<th>Person making 'peer/self' assessment</th>
<th>Person being assessed by peers/self</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose</td>
<td>Rose 80 Jack 70 Martha 100 Donna 100</td>
</tr>
<tr>
<td>Jack</td>
<td>100 100 100 100</td>
</tr>
<tr>
<td>Martha</td>
<td>90 50 80 100</td>
</tr>
<tr>
<td>Donna</td>
<td>90 60 100 100</td>
</tr>
<tr>
<td>Average peer/self mark</td>
<td>90 70 95 100</td>
</tr>
<tr>
<td>Final mark (boxed)</td>
<td>60% x 90 = 54 60% x 70 = 42 60% x 95 = 57 60% x 100 = 60</td>
</tr>
</tbody>
</table>
Once your choice of journal paper has been approved, read it thoroughly so that you fully understand it, since it will be the basis for both components of this chunk of assessment.

In the first component you will summarise the paper’s meaning in up to 200 words of ordinary English. You will then reflect upon the communication context of the paper’s topic, and use published research to back up your reflections. You’ll write up to 300 words on the topic of what might make the content of this paper tricky to communicate, in terms of things like potential audiences, political entanglements, ethical dilemmas, intimidating jargon terms, and/or whatever else is relevant. You will also make notes of how you will go about overcoming these obstacles to communication.

In the second component you will attempt to communicate the content of the paper with two different audiences and mediums that you choose from a set list. You will translate the paper’s information into a news story, blog post, grant application, trifold leaflet and/or public lecture. Can you conquer the obstacles that make communicating this topic tricky?

context X issue Q 1:
summary & reflection on scientific paper
due thursday 8 may, week 10

In this component of chunk 2 you will choose a research paper from a peer-reviewed scientific journal, published between 2012 and 2014. You must read it thoroughly so that you know it well and summarise it in a short couple of paragraphs, of up to 200 words in total. You will then reflect upon its communication context, using material from lectures, readings and other materials you research yourself, and will outline how you will negotiate the obstacles thrown up by that context.

Choosing and summarising your research paper
First you must choose the research paper. Brainstorm some ideas about the general topic area you’re interested in before you commit to one paper. Then do some research in the library system into the titles of scientific journals in your topic area. Browse journal databases such as Web of Science, or specific journals’ online archives, for a paper that interests you. When selecting your paper, make sure it is:

- published in or after 2012
- a research paper, not a review paper (we’ll discuss the difference in week 4)
- a paper that reports on scientific research, not science communication research, or policy research, or ethics research etc (we’ll discuss what this means in class).

The reasons for the second and third restrictions are that scientific research papers are usually extremely difficult to communicate about with non-specialists because they are full of scientific jargon and high-level concepts. Scientific review papers, as well as research papers in areas like science communication or science policy, are usually more accessible to a general readership, which would defeat the purpose of this chunk of assessment.

When you are happy with your choice, upload a copy of the paper to the designated place on Wattle for Lindy to approve your choice. You can upload a few different papers if you’re not sure which is okay. When your choice has been approved, take some time to read and understand the paper. Read it thoroughly and get to know it intimately. Look up words and concepts you don’t understand.

Then write, in plain English, a synopsis of the main ideas of the paper and of any particularly interesting points. You should explain – or where possible, omit – any jargon terms that a non-science audience would not understand. If you don’t understand it, probably no one else will either. Don’t get bogged down in unnecessary detail. For example, the nitty-gritty of the
methods used by the researchers may not be important to the overall findings. Your summary should refer to the methods but the main point of this summary is to bring out the main concepts of the paper and explain them as if to a non-specialist audience. You are not required to reference additional material for the summary. You may need to consult textbooks, encyclopedias and so on in order to understand the science in the journal paper, but you don’t need to reference this unless you are quoting it. Ideally you will not reference anything at all except for the chosen research paper itself.

Reflecting on the topic’s communication context
Next, you need to reflect upon the communication context of the paper’s topic. Do some research into public attitudes to the topic, or difficulties students have absorbing the topic in the classroom. Is there a complex or abstract element of the topic that you know people have trouble getting their heads around? Does the paper concern a controversial science issue that creates a lot of debate, dissent or protest whenever it is communicated? Does it refer to a technological development that is or might be destructive to the environment or dangerous to human health? Is it a new area of scientific research that still holds a lot of uncertainty, even for the scientific community? Is it an element of the high school science curriculum that students repeatedly get wrong because of well-worn misconceptions?

The ‘communication context’ will vary from one topic to the next, but it might include one or more of the following:

- **people context**: Who cares about this topic? Who is already communicating about it? Who is affected by it? Is there anything about these people in particular that makes communication of this topic tricky?
- **historical context**: Is this a new area of research that the community is only just hearing about? Or an old field of science that is familiar to most people? Have past communication efforts affected the current communication context?
- **cultural context**: What are the cultural dynamics of this topic that might obstruct or enhance communication about it? ‘Culture’ here could refer to many factors, including national and ethnic identities, class considerations, age- or generation-based trends, gender or sexuality-related associations, taboos, degrees of nerdiness, prominence of the topic in popular media, and more.
- **political and economic context**: Are there government policies relevant to this topic? Is there money to be made or lost from it? Are there other kinds of vested interests involved? What are they and how do they influence the communication context?
- **the kinds of factors that have been shown to affect people’s attitudes to this topic**: If no research has been done on public attitudes to your topic, what kinds of factors do you think are likely to affect people’s attitudes? Is there a similar science topic that you can research to inform your argument?

Note that the scientific research paper itself will likely only tackle a very narrow aspect of the topic as a whole. To do research on the communication context of it, you must think about the paper’s topic more broadly. For example your paper might focus on a new method of manufacturing the coolant water in nuclear power plants. It will be difficult to find any research on the communication context of that specific topic. But think more broadly - the things that make that topic difficult to communicate are broader issues like attitudes to nuclear power, awareness of the Fukushima nuclear disaster, the need for alternative energy sources given climate change, the complexity of understanding how there can be different kinds of water (and why ‘water’ must be manufactured at all), and so on.

Your reflection on the communication context of the paper’s topic should be no longer than 300 words, and can be in dot points or prose, whatever you prefer, as long as you are clear. At least some of the points of reflection (ideally all, for maximum marks) should be based on research you have done using the academic literature, and these points should be fully referenced. Your references are not included in the word limit. Put into practice what you learned in the research and reference task in Chunk 1. As a starting point consider the case...
studies of communication context discussed in lectures and readings in this course. You can reference those sources too if they are relevant to your reflection.

Your reflection can also include strategies you will take for overcoming the obstacles to communication, and for capitalising on the elements of the communication context that might enhance the communication process. Basically you should outline the research and thinking you have put into planning your translations of the journal paper for particular audiences and mediums.

Marking criteria
To be eligible for a pass on this component:

- your chosen research paper must be approved by Lindy.
- you must make a reasonable attempt to understand the paper and summarise it in plain English.
- your summary must be no more than 200 words.
- your reflection must be no more than 300 words, excluding references.

What your assignment should ideally demonstrate:

- a summary that accurately, concisely and articulately communicates the major elements of the paper.
- a comprehensive grasp of the communication context of your topic.
- a reflection based strongly on evidence from the academic literature about public perceptions or attitudes towards your topic, or similar.
- clear links between your reflection and the creative decisions you make in your translations.

context X issue Q 2:
two translations
2 x 15%
all due friday 23 may, week 12 at 5pm, except presentations
presentations to be delivered in your tutorial that week

One important aspect of communicating science with a general audience is presenting it in a language that is jargon free and easily understood by non-specialists - and your summary of your journal paper hopefully achieves this. But another important aspect is tailoring that information to suit different mediums and to meet the needs of different audiences. In this component you will translate the information from your journal paper into two different mediums for two different audiences. Your task is to apply what you learned in your reflection on the journal paper topic’s communication context, and overcome the existing trickiness of communicating this topic.

You must choose two of the following translation options:

a) A 5-10 minute public lecture to be delivered to retirees enjoying a shipboard Pacific cruise.

b) A news-style article of 300 to 500 words, suitable for readers of The Canberra Times.

c) A 300-500 word A4-sized, trifold leaflet, to be distributed to patients through a public clinic or to people involved with a community/non-government organisation.

d) A 300-500 word blog post, to be used in an activist campaign to convince people who are ‘fence-sitters’ on the campaign issue to swing over to your side.

e) A completed mini-application for a research grant, to be read by non-specialists administering the grant.
If you choose (a), you must deliver your ‘lecture’ to your tute class (who will masquerade as retirees on a cruise) in week 12 tutorials. All the other options are due by 5pm on Friday 23 May.

The exact ‘brief’ for each of these five medium/audience options will be posted on Wattle early in the semester. Read through the briefs to choose the two mediums/audiences you think are most appropriate and interesting for translating your paper, given its content, its communication context, and your own career ambitions. For example, a journal paper about a controversial technology might be easy to translate into an opinionated blog post, but if you have an ambition to be a science journalist, then why not try the newspaper article option instead?

Think about the requirements of each medium in terms of structure and presentation, and the needs of each audience in terms of style, aesthetics, emotional register, etc. One of the most important decisions you’ll have to make is what particular information from the journal paper to include in each translation. Different mediums will require different information, as will different audiences. A large part of your mark will depend on how well you pitch the content to the medium and audience you choose.

Then carefully craft and polish your two translations before presenting or submitting them. The more convincing and realistic you can make them, the better your mark will be. Pay attention to the lectures on communicating visual information and communicating risk, if your content involves those things and if they are appropriate for your chosen mediums. Put into practice everything you’ve learned in the course to do the best job you can of communicating this aspect of science to a new audience.

As with your summary, you are not required to reference additional material for this component of the assignment. If you absolutely have to refer to additional material in your translations, you must name the source of the information in a way that is appropriate to each particular medium. Remember that you are not writing for a specialist audience, so don’t use an academic style of referencing, since your audience may find it alienating.

Marking criteria

To be eligible for a pass on this assignment:

- each translation must meet the specifications you have been given in the brief for the particular mediums and audiences, i.e. things like word limits and required forms. **Again, these ‘briefs’ are posted on Wattle.**
- your spelling, grammar and punctuation must be reasonable.

What your assignment should ideally demonstrate:

- an appropriately pitched style and content level, geared to the translation’s particular medium and audience.
- an understanding of the required structure for each medium, such as the ‘inverted triangle’ model for a piece of journalism.
- competence in explaining scientific concepts & findings simply but accurately, without the use of jargon, and for a particular audience.
- skill in designing and creating your translations to make them appealing and easy to read or watch.
- creativity, elegance and conciseness in writing, speaking and/or design.
- competence in structuring your ideas so that your translations flow, make sense and are easy to follow.
- seamless and medium-appropriate acknowledgement of any sources you quote.
CONFERENCE FEEDBACK 5%
due during week 13, date/time TBA

Some time during week 13 of semester, students in the second year science communication course SCOM2001 Practical Skills for Communicating Science will hold a conference that they will have organised, and at which they will be presenting papers that they have researched, written and developed on science and science communication topics. Students in the third year course SCOM3001 Science, Risk and Ethics may also present at the conference, talking about risk communication strategies they have developed in their course.

You are required to attend at least part of the conference and give written feedback on three of the presentations, using your knowledge of science communication principles. Feedback sheets will be provided on the day, and should be handed to Lindy. Later they’ll be given to the speakers to help their presentation skills.

Marking criteria

To be eligible for a pass on this assignment:
• you must attend the conference and provide feedback on presentations you actually witness.
• you must give feedback on at least three presentations. You can earn partial marks for offering feedback on one or two presentations.
• feedback sheets must be handed to Lindy that day. No late submissions will be accepted.

What your assignment should ideally demonstrate:
• respect for the speaker, both in terms of giving positive feedback and in terms of offering critical advice for the future.
• detail, precision and thoroughness in your feedback.
• appropriate use of science communication terminology and principles in your feedback.
• an accurate reflection of what the presenter actually did and said.